Part Number Hot Search : 
TSM3442 TR25JSN AT27C400 IL216AT GL3274 KSH42C F2TVS54A 038720
Product Description
Full Text Search
 

To Download R1221N50AH-TR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 12345
n OUTLINE
`99.12.8
Step-down DC/DC Converter with Voltage Detector
R1221N Series
The R1221N Series are PWM step-down DC/DC Converter controllers embedded with a voltage detector, with low supply current by CMOS process. Each step-down DC/DC converter in these ICs consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a soft-start circuit, a protection circuit, a PWM/VFM alternative circuit, a chip enable circuit, and resistors for voltage detection. A low ripple, high efficiency step-down DC/DC converter can be composed of this IC with only four external components, or a power-transistor, an inductor, a diode and a capacitor. The output voltage of DC/DC converter can be supervised by the built-in voltage detector. With a PWM/VFM alternative circuit, when the load current is small, the operation turns into the VFM oscillator from PWM oscillator automatically, therefore the efficiency at small load current is improved. And the PWM/VFM alternative circuit is an option, in terms of C version and D version, the circuit is not included. If the term of maximum duty cycle keeps on a certain time, the embedded protection circuit works. There are two types of protection function. One is latch-type protection circuit, and it works to latch an external Power MOS with keeping it disable. To release the condition of protection, after disable this IC with a chip enable circuit, enable it again, or restart this IC with power-on. The other is Reset-type protection circuit, and it works to restart the operation with soft-start and repeat this operation until maximum duty cycle condition is released. Either of these protection circuits can be designated by users' request.
n FEATURES
l Wide Range of Input Voltage * * * * * * * * * * * * * 2.3V to 13.2V l Built-in Soft-start Function and two choices of Protection Function(Latch-type or Reset-type) l Two choices of Oscillator Frequency * * * * * * * * * * 300kHz, 500kHz l High Efficiency * * * * * * * * * * * * * * * * * * * * * * TYP. 90% l Standby Current * * * * * * * * * * * * * * * * * * * * * TYP. 0A l Setting Output Voltage * * * * * * * * * * * * * * * * * Stepwise setting with a step of 0.1V in the range of 1.5V to 5.0V l High Accuracy Output Voltage * * * * * * * * * * * * * * 2.0% l Setting Detector Threshold Voltage * * * * * * * * * * * Stepwise setting with a step of 0.1V in the range of 1.2V to 4.5V l High Accuracy Detector Threshold Voltage* * * * * * * 2.0% l Low Temperature-Drift Coefficient of Output Voltage * TYP. 100ppm/C
n APPLICATIONS
l Power source for hand-held communication equipment, cameras, video instruments such as VCRs, camcorders. l Power source for battery-powered equipment. l Power source for household electrical appliances.
12345
Rev. 1.11 -1-
n BLOCK DIAGRAM
VIN
OSC
VOUT
Vref
EXT
PWM/VFM CONTROL Protection Soft Start Chip Enable
CE
Vref
VDOUT
GND
n SELECTION GUIDE
In the R1221N Series, the output voltage, the detector threshold, the oscillator frequency, the optional function, and the taping type for the ICs can be selected at the user's request. The selection can be made by designating the part number as shown below;
R1221NXXXX-TR
- -a bc
Code a b Contents Setting Output Voltage(VOUT): Stepwise setting with a step of 0.1V in the range of 1.5V to 5.0V is possible. Setting Detector Threshold(-VDET) Stepwise setting with a step of 0.1V in the range of 1.2V to 4.5V is possible. A:3.0V Designation of Oscillator Frequency and Optional Function A:300kHz, with a PWM/VFM alternative circuit, Latch-type protection B:500kHz, with a PWM/VFM alternative circuit, Latch-type protection C:300kHz, without a PWM/VFM alternative circuit, Latch-type protection D:500kHz, without a PWM/VFM alternative circuit, Latch-type protection E:300kHz, with a PWM/VFM alternative circuit, Reset-type protection F:500kHz, with a PWM/VFM alternative circuit, Reset-type protection G:300kHz, without a PWM/VFM alternative circuit, Reset-type protection H:500kHz, without a PWM/VFM alternative circuit, Reset-type protection
c
12345
Rev. 1.11 -2-
n PIN CONFIGURATION
l SOT-23-6W
6
5
4
CE
VOUT GND
(mark side) EXT VDOUT VIN
1
2
3
n PIN DESCRIPTION
Pin No. 1 2 3 4 5 6 Symbol EXT VDOUT VIN CE GND VOUT Description External Transistor Drive Pin (Output Type ; CMOS) Voltage Detector Output Pin (Output Type ; Nch Open Drain ) Power Supply Pin Chip Enable Pin Ground Pin Pin for Monitoring Output Voltage
n ABSOLUTE MAXIMUM RATING
Symbol VIN VEXT VCE VDOUT VOUT IEXT PD Topt Tstg Item VIN Supply Voltage EXT Pin Output Voltage CE Pin Input Voltage VDOUT Pin Output Voltage VOUT Pin Input Voltage EXT Pin Inductor Drive Output Current Power Dissipation Operating Temperature Range Storage Temperature Range Rating 15 -0.3~VIN+0.3 -0.3~VIN+0.3 -0.3~15 -0.3~VIN+0.3 25 250 -40~+85 -55~+125 Unit V V V V V mA mW C C
12345
Rev. 1.11 -3-
n ELECTRICAL CHARACTERISTICS
lR1221N***A(C,E,G) Output Voltage : Vo, Detector Threshold : VD Symbol VIN VOUT Item Operating Input Voltage Step-down Output Voltage VIN=VCE=Vo+1.2V, IOUT=-10mA Conditions (Topt=25C) MIN. TYP. MAX. Note* Unit 2.3 Vo 0.98 DVOUT/ DT fosc DfOSC/ DT IDD1 Istb IEXTH IEXTL ICEH ICEL VCEH VCEL Maxdty VFMdty Tstart Step-down Output Voltage Temperature Coefficient Oscillator Frequency Frequency Temperature Coefficient Supply Current1 Standby Current EXT "H" Output Current EXT "L" Output Current CE "H" Input Current CE "L" Input Current CE "H" Input Voltage CE "L" Input Voltage Oscillator Maximum Duty Cycle VFM Duty Cycle Delay Time by Soft-Start function Tprot IVDLK IVDL -VDET Applied to B and F versions only VIN=Vo+1.2V,VCE=0V(R)Vo+1.2V At 80% of rising 1 3 0 1 VD VD 1.02 5 10 J ms 5 0.5 G I I J ms mA mA V 5 VIN=13.2V,VCE=13.2V,VOUT=13.2V VIN=13.2V,VCE=0V,VOUT=0V VIN=8V,VEXT=7.9V,VOUT=8V,VCE=8V VIN=8V,VEXT=0.1V,VOUT=0V,VCE=0V VIN=13.2V,VCE=13.2V,VOUT=13.2V VIN=13.2V,VCE=0V,VOUT=13.2V VIN=8V,VCE=0V(R)1.5V VIN=8V,VCE=1.5V(R)0V 0.3 100 25 10 16 F -0.5 10 100 0 -10 20 0 0 0.8 0.8 1.2 0.5 160 0.5 -6 B C D D E E F F VIN=VCE=Vo+1.2V, IOUT=-100mA -40C Topt 85C 240 300 0.3 360 A -40C Topt 85C 100 Vo 13.2 Vo 1.02 ppm/ C kHz %/ C mA mA mA mA mA mA V V % % ms A V V
Delay Time for protection circuit VIN=Vo+1.2V,VCE=Vo+1.2V(R)0V VDOUT Output Leakage Current VIN=VOUT=VCE=VDOUT=8V VDOUT "L" Output Current Detector Threshold
VIN=VOUT=2.3V, VCE=0V, VDOUT=0.1V 0.5 VIN=6V, VCE=6V, VOUT=VD1.2V(R)0V VD 0.98
tVDET
Output Delay Time for Released VIN=6V, VCE=6V, VOUT=0V(R)VD1.2V Voltage At 80% of rising VIN=6V, VCE=6V, VOUT=0V(R)VD1.2V
2
VHYS
Detector Threshold Hysteresis
VD 0.01
VD 0.03 100
VD 0.05
J
mV
D-VDET/
Detector Threshold
-40C Topt 85C
ppm/ C
DT Temperature Coefficient Note: Refer to Test Circuits
12345
Rev. 1.11 -4-
lR1221N***B(D,F,H) Output Voltage : Vo, Detector Threshold : VD Symbol VIN VOUT Item Operating Input Voltage Step-down Output Voltage VIN=VCE=Vo+1.2V, IOUT=-10mA Conditions
(Topt=25C) MIN. TYP. MAX. Note* Unit 2.3 Vo 0.98 Vo 13.2 Vo 1.02 100 ppm/ C A V V
DVOUT/ DT fosc DfOSC/ DT IDD1 Istb IEXTH IEXTL ICEH ICEL VCEH VCEL Maxdty VFMdty Tstart
Step-down Output Voltage Temperature Coefficient Oscillator Frequency Frequency Temperature Coefficient Supply Current1 Standby Current EXT "H" Output Current EXT "L" Output Current CE "H" Input Current CE "L" Input Current CE "H" Input Voltage CE "L" Input Voltage Oscillator Maximum Duty Cycle VFM Duty Cycle Delay Time by Soft-Start function
-40C Topt 85C
VIN=VCE=Vo+1.2V, IOUT=-100mA -40C Topt 85C
400
500 0.3
600
A
kHz %/ C
VIN=13.2V,VCE=13.2V,VOUT=13.2V VIN=13.2V,VCE=0V,VOUT=0V VIN=8V,VEXT=7.9V,VOUT=8V,VCE=8V VIN=8V,VEXT=0.1V,VOUT=0V,VCE=0V VIN=13.2V,VCE=13.2V,VOUT=13.2V VIN=13.2V,VCE=0V,VOUT=13.2V VIN=8V,VCE=0V(R)1.5V VIN=8V,VCE=1.5V(R)0V 0.3 100 Applied to B and F versions only VIN=Vo+1.2V,VCE=0V(R)Vo+1.2V At 80% of rising 1 3 -0.5 10
140 0 -10 20 0 0 0.8 0.8
200 0.5 -6
B C D D
mA mA mA mA mA mA V V %
0.5
E E
1.2
F F
25 6 10 F
% ms
Tprot IVDLK IVDL -VDET
Delay Time for protection circuit VIN=Vo+1.2V,VCE=Vo+1.2V(R)0V VDOUT Output Leakage Current VIN=VOUT=VCE=VDOUT=8V VDOUT "L" Output Current Detector Threshold VIN=VOUT=2.3V,VCE=0V, VDOUT=0.1V VIN=6V, VCE=6V, VOUT=VD1.2V(R)0V
2 0
4 0.5
G I I
ms mA mA V
0.5 VD 0.98
1 VD VD 1.02 3.5 6.0
J
tVDET
Output Delay Time for Released VIN=6V, VCE=6V, VOUT=0V(R)VD1.2V Voltage At 80% of rising VIN=6V, VCE=6V, VOUT=0V(R)VD1.2V
1.5
J
ms
VHYS
Detector Threshold Hysteresis
VD 0.01
VD 0.03 100
VD 0.05
J
mV
D-VDET/
Detector Threshold
-40C Topt 85C
ppm/ C
DT Temperature Coefficient Note: Refer to Test Circuits
12345
Rev. 1.11 -5-
n TEST CIRCUITS
A)
PMOS
L
F)
PMOS
L
+
3
1
6
+
V
VIN
--
SD
4 2 5
-
CL VIN
+ - CIN
3
1
6
+
V
CIN
SD
4 2 5
-
CL
B)
A 3
+ -
OSCILLOSCOPE 1 6 OSCILLOSCOPE
VIN
G)
OSCILLOSCOPE 4 2 5 3 1 6
CIN VIN
VOUT
4 2 5
C)
VIN
A
3
1
6
H)
3 4 2 5 1 6 A
VIN
VOUT
4 2 5
D)
3 1
A
VEXT
I)
6 3 1 6
VIN VOUT
4 2 5
VIN
4 2 5
E) J)
3 1 6 3 1 6
A
VDOUT
VIN
A 4 2 5
VIN
4 2 5
VOUT
R
OSCILLOSCOPE
Inductor L : 27mH(Sumida Electronic, CD104) Capacitor CL: 47mF(Tantalum type) Power MOS PMOS : HAT1020R(Hitachi)
Diode SD : RB491D (Rohm, Schottky type) CIN : 22mF(Tantalum type) Resistor R : 100kW
12345
Rev. 1.11 -6-
n TYPICAL APPLICATIONS AND APPLICATION HINTS
PMOS L VIN CIN CE GND VDOUT EXT VOUT SD1 COUT R1
Vcc
Reset/
CE CONTROL
CPU
PMOS: HAT1020R (Hitachi), Si3443DV (Siliconix) SD1 CIN : RB491D (Rohm) :10mF(Tantalum Type) L : CD105(Sumida, 27mH) COUT : 47mF(Tantalum Type) R1 : 100kW
When you use these ICs, consider the following issues; l As shown in the block diagram, a parasitic diode is formed in each terminal, each of these diodes is not formed for load current, therefore do not use it in such a way. When you control the CE pin by another power supply, do not make its "H" level more than the voltage level of VIN pin. l Detector threshold hysteresis is set at 3 percent of detector threshold voltage. (Min. 1 percent, Max. 5 percent) l Setting Detector threshold voltage range depends on Output voltage of DC/DC converter. Release Voltage from Reset condition must not be more than Output voltage of DC/DC converter. (Detector Threshold Voltage1.07 < Output Voltage of DC/DC converter0.98 l When the R1221NXXXX is on stand-by mode, the output voltage of VDOUT is GND level, therefore if the pull-up resistor for VDOUT pin is pulled up another power supply, a certain amount of current is loading through the resistor. l The operation of Latch-type protection circuit is as follows; When the maximum duty cycle continues longer than the delay time for protection circuit, (Refer to the Electrical Characteristics) the protection circuit works to shut-down the external Power MOS with its latching operation. Therefore when an input/output voltage difference is small, the protection circuit may work even at small load current. To release the protection state, after disable this IC with a chip enable circuit, enable it again, or restart this IC with power-on. However, in the case of restarting this IC with power-on, after the power supply is turned off, if a certain amount of charge remains in CIN, or some voltage is forced to VIN from CIN, this IC might not be restarted even after power-on. If rising transition speed of supply voltage is too slow, or the time which is required for VIN voltage to reach Output Voltage of DC/DC converter is longer than soft-starting time plus delay time for protection circuit, protection circuit works before VIN voltage reaches Output Voltage of DC/DC converter. To avoid this condition, make this IC disable(CE="L") first, then force VIN voltage, and after VIN voltage becomes equal or more than VOUT, make this IC enable(CE="H"). l Set external components as close as possible to the IC and minimize the connection between the components and the IC. In particular, a capacitor should be connected to VOUT pin with the minimum connection. And make sufficient grounding and reinforce supplying. A large switching current flows through the connection of power supply, an inductor and the connection of VOUT. If the impedance of power supply line is high, the voltage level of power supply of the IC fluctuates with the switching current. This may cause unstable operation of the IC.
12345
Rev. 1.11 -7-
l Use capacitors with a capacity of 22mF or more for VOUT Pin, and with good high frequency characteristics such as tantalum capacitors. We recommend you to use capacitors with an allowable voltage which is at least twice as much as setting output voltage. This is because there may be a case where a spike-shaped high voltage is generated by an inductor when an external transistor is on and off. l Choose an inductor that has sufficiently small D.C. resistance and large allowable current and is hard to reach magnetic saturation. And if the value of inductance of an inductor is extremely small, the ILX may exceed the absolute maximum rating at the maximum loading. Use an inductor with appropriate inductance. l Use a diode of a Schottky type with high switching speed, and also pay attention to its current capacity. l Do not use this IC under the condition at VIN voltage less than minimum operating voltage. P The performance of power source circuits using these ICs extremely depends upon the peripheral circuits. Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their respected rated values.
n OPERATION of step-down DC/DC converter and Output Current
The step-down DC/DC converter charges energy in the inductor when Lx transistor is ON, and discharges the energy from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output voltage than the input voltage is obtained. The operation will be explained with reference to the following diagrams :
i1 IOUT L VIN Lx Tr SD i2 CL ton VOUT ILmin
ILmax topen
toff T=1/fosc
Step 1 : LxTr turns on and current IL(=i1) flows, and energy is charged into CL. At this moment, IL increases from ILmin(=0) to reach ILmax in proportion to the on-time period(ton) of LXTr. Step 2 : When LxTr turns off, Schottky diode(SD) turns on in order that L maintains IL at ILmax, and current IL(=i2) flows. Step 3 : IL decreases gradually and reaches ILmin after a time period of topen, and SD turns off, provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this case, IL value is from this ILmin(>0). In the case of PWM control system, the output voltage is maintained by controlling the on-time period(ton), sith the oscillator frequency(fosc) being maintained constant. l Discontinuous Conduction Mode and Continuous Conduction Mode The maximum value(ILmax) and the minimum value(ILmin) of the current which flows through the inductor are the same as those when LxTr is ON and when it is OFF. The difference between ILmax and ILmin, which is represented by DI ; DI =ILmax -ILmin =VOUTtopen/L=(VIN-VOUT)ton/LxxxEquation 1 wherein T=1/fosc=ton+toff duty(%)=ton/T100=tonfosc100 topentoff
12345
Rev. 1.11 -8-
In Equation 1, VOUTtopen/L and (VIN-VOUT)ton/L are respectively show the change of the current at ON, and the change of the current at OFF. When the output current(IOUT) is relatively small, topen0). The former mode is referred to as the discontinuous mode and the latter mode is referred to as continuous mode.
In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc, tonc =TVIN/VOUTxxx Equation 2 When tonn OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS
When LxTr is ON: (Wherein, Ripple Current P-P value is described as IRP, ON resistance of LXTr is described as Rp the direct current of the inductor is described as RL.) VIN=VOUT+(Rp +RL)IOUT+LIRP/ton When LxTr is OFF: LIRP/ toff =VF+VOUT+RLIOUT xxxEquation 3 xxxEquation 4
Put Equation 4 to Equation 3 and solve for ON duty, ton/(toff+ton)=DON, DON=(VOUT+VF+RLIOUT)/(VIN+VF-RpIOUT)xxxEquation 5 Ripple Current is as follows; IRP=(VIN-VOUT-RpIOUT-RLIOUT)DON/f/L 1/4Equation 6 wherein, peak current that flows through L, LxTr, and SD is as follows; ILmax=IOUT+IRP/2 1/4Equation 7
Consider ILmax, condition of input and output and select external components. HThe above explanation is directed to the calculation in an ideal case in continuous mode.
n External Components
1. Inductor Select an inductor that peak current does not exceed ILmax. If larger current than allowable current flows, magnetic saturation occurs and make transform efficiency worse. When the load current is same, the smaller value of L, the larger the ripple current. Provided that the allowable current is large in that case and DC current is small, therefore, for large output current, efficiency is better than using an inductor with a large value of L and vice versa, 2. Diode Use a diode with low VF (Schottky type is recommended.) and high switching speed. Reverse voltage rating should be more than VIN and current rating should be equal or more than ILmax.
12345
Rev. 1.11 -9-
3. Capacitor As for CIN, use a capacitor with low ESR(Equivalent Series Resistance) and a capacity of at least 10mF for stable operation. COUT can reduce ripple of Output Voltage, therefore 47mF to 100mF tantalum type is recommended. 4. Lx Transistor Pch Power MOS FET is required for this IC. Its breakdown voltage between gate and source should be a few volt higher than Input Voltage. In the case of Input Voltage is low, to turn on MOS FET completely, select a MOS FET with low threshold voltage. If a large load current is necessary for your application and important, choose a MOS FET with low ON resistance for good efficiency. If a small load current is mainly necessary for your application, choose a MOS FET with low gate capacity for good efficiency. Maximum continuous drain current of MOS FET should be larger than peak current, ILmax.
12345
Rev. 1.11 - 10 -
n TYPICAL CHARACTERISTCS
1) Output Voltage vs. Output Current
R1221N33AH 3.400 3.380 3.360 3.340 3.320 3.300 3.280 3.260 3.240 3.220 3.200
L=27uH
1.520
R1221N15XH
L=27uH
Output Voltage VOUT(V)
Output Voltage VOUT(V)
1.515 1.510 1.505 1.500 1.495 1.490 1.485 1.480
13.2V 8V 5V 2.3V
12V 8V 4.5V
1E-05 0.0001 0.001 0.01 0.1 Output Current IOUT(A)
2) Efficiency vs. Output Current
1
1E-05 0.0001 0.001 0.01 0.1 Output Current IOUT(A)
1
R1221N33AA(VIN=4.5V) 100 90 80 70 60 50 40 30 20 10 0 0.1
CD104-27uH Si3443DV
R1221N33AA(VIN=12V)Si3443DV 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 100 Output Current IOUT(mA)
CD104-27uH
Efficiency (%)
Efficiency (%)
1 10 100 Output Current IOUT(mA) R1221N33AC(VIN=4.5V)
1000
1000
CD104-27uH Si3443DV
R1221N33AB(VIN=12V)Si3443DV 100 80 Efficiency (%) 60 40 20 0
CD104-27uH
100 80 Efficiency (%) 60 40 20 0 0.1 1 10 100 Output Current IOUT(mA) 1000
0.1
1 10 100 Output Current IOUT(mA)
1000
12345
Rev. 1.11 - 11 -
R1221N33AC(VIN=4.5V) Si3443DV 100 90 80 Efficiency (%) 70 60 50 40 30 20 10 0 0.1 1 10 100 Output Current IOUT(mA)
CD104-27uH
R1221N33AC(VIN=12V)Si3443DV 100 90 80 Efficiency (%) 70 60 50 40 30 20 10 0
CD104-27uH
1000
0.1
1 10 100 Output Current IOUT(mA)
1000
R1221N50XA(VIN=6.0V) 100 80 Efficiency (%) 60
CD104-27uH Si3443DV
R1221N50XA(VIN=12V) Si3443DV 100 80 60 Efficiency (%) 40 20 0
CD104-27uH
40 20 0 0.1 1 10 100 Output Current IOUT(mA) 1000
0.1
1
10
100
1000
Output Current IOUT(mA)
R1221N50XB(VIN=6.0V) 100 80 Efficiency (%)
CD104-27uH Si3443DV
R1221N50XB(VIN=12V) Si3443DV 100 80 Efficiency (%) 60 40 20 0 0.1
CD104-27uH
60 40 20 0 0.1 1 10 100 Output Current IOUT(mA) 1000
1 10 100 Output Current IOUT(mA)
1000
12345
Rev. 1.11 - 12 -
R1221N50XC(VIN=6.0V) Si3443DV 100 80 Efficiency (%) 60 40 20 0 0.1 1 10 100 Output Current IOUT(mA)
CD104-27uH
R1221N50XC(VIN=12V) Si3443DV 100 80 Efficiency (%) 60 40 20 0
CD104-27uH
1000
0.1
1 10 100 Output Current IOUT(mA)
1000
3) Ripple Voltage vs. Output Current R1221N33AA 200 180 160 140 120 100 80 60 40 20 0 1 Ripple Voltage Vrpp(mV)
VIN4.5V VIN8V VIN12V L=27uH C=47uF(Ta)
R1221N50XA 200 180 160 140 120 100 80 60 40 20 0 1 Ripple Voltage Vrpp(mV)
L=27uH C=47uF(Ta)
VIN6V VIN8V VIN12V
10 100 Output Current IOUT(mA)
1000
10 100 Output Current IOUT(mA)
1000
R1221N33AB 200 180 Ripple Voltage Vrpp(mV) 160 140 120 100 80 60 40 20 0 1 10 100
VIN4.5V VIN8V VIN12V
L=27uH C=47uF(Ta)
R1221N50XB 200 180 Ripple Voltage Vrpp(mV) 160 140 120 100 80 60 40 20 0 1
VIN6V VIN8V VIN12V
L=27uH C=47uF(Ta)
1000
Output Current IOUT(mA)
10 100 Output Current IOUT(mA)
1000
12345
Rev. 1.11 - 13 -
R1221N33AC 200 160 140 120 100 80 60 40 20 0 1
VIN4.5V VIN8V VIN12V
L=27uH C=47uF(Ta)
R1221N50XC 200 180 160 140 120 100 80 60 40 20 0 1
L=27uH C=47uF(Ta)
Ripple Voltage Vrpp(mV)
180 Ripple Voltage Vrpp(mV)
VIN6V VIN8V VIN12V
10 100 Output Current IOUT(mA)
1000
10 100 Output Current IOUT(mA)
1000
4) Oscillator Frequency vs. Input Voltage
600 Oscillator Frequency fosc(kHz) 500 400 300 200 100 0 0
R1221N15XB
L=27uH
R1221N15XA 600 Oscillator Frequency fosc(kHz) 500 400 300 200 100 0
L=27uH
5 10 Input Voltage VIN(V)
15
0
5 10 Input Voltage VIN(V)
15
5) Output Voltage vs. Input Voltage
R1221N15XB 1.53 Output Voltage Vout(V) 1.52 1.51 1.50 1.49 1.48 1.47 0 5 10 Input Voltage VIN(V)
L=27uH
R1221N15XA 1.53 Output Voltage Vout(V) 1.52 1.51 1.50 1.49 1.48 1.47 15 0 5 10 Input Voltage VIN(V)
L=27uH
15
12345
Rev. 1.11 - 14 -
R1221N33AB 3.36 Output Voltage Vout(V)
L=27uH
R1221N33AA 3.36 Output Voltage Vout(V) 3.34 3.32 3.30 3.28 3.26 3.24
L=27uH
3.34 3.32 3.30 3.28 3.26 3.24 0 5 10 Input Voltage VIN(V) 15
0
5 10 Input Voltage VIN(V)
15
6) Output Voltage vs. Temperature
R1221N33AH 3.31 Output Voltage VOUT(V) 3.30 3.29 3.28 3.27 -50 0 50
L=27uH
R1221N15XB 1.51 Output Voltage VOUT(V)
L=27uH
1.50
1.49
1.48
1.47 100 -50 Temperature Topt (C) 0 50 Temperature Topt(C) 100
7) Detector Threshold vs. Temperature
R1221N25XA(VD=2.0V) VIN=6V 2.01 Detector Threshold VDOUT(V) Detector Threshold VDOUT(V) 1.22
R1221N15XB(VD=1.2V)
VIN=6V
2.00
1.21
1.99
1.20
1.98
1.19
1.97 -50 0 50 Temperature Topt(C) 100
1.18 -50 0 50 Temperature Topt (C) 100
12345
Rev. 1.11 - 15 -
R1221N33AB(VD=3.0V) 3.06 Detector Threshold VDOUT(V) 3.04 3.02 3.00 2.98 2.96 2.94 -50
VIN=6V
0 50 Temperature Topt(C)
100
8) Oscillator Frequency vs. Temperature
R1221N33AB 600 Oscillator Frequency fosc(kHz) 550 500 450 400 -50
L=27uH VIN=4.5V
R1221N25XA Oscillator Frequency fosc(kHz) 360 340 320 300 280 260 240 -50
L=27uH VIN=3.7V
0 50 Temperature Topt (C)
100
0 50 Temperature Topt(C)
100
9) Supply Current vs. Temperature R1221N33AH 135 130 Supply Current1(uA) 125 120 115 110 105 100 95 90 -50 0 50 Temperature Topt(C) 100 50 -50 0 50 Temperature Topt(C) 100
VIN15V VIN13.2V VIN8V
R1221N33AG 100 90 80 70 60
VIN15V VIN13.2V VIN8V
12345
Rev. 1.11 - 16 -
Supply Current1(uA)
10) Soft-start Time vs. Temperature R1221N33AB 10 Soft-start Time(msec) 8 6 4 2 0 -50 0 50 Temperature Topt(C) 100 Soft-start Time (msec)
L=27uH VIN=4.5V
R1221N25XA 12 10 8 6 4 2 -50
L=27uH VIN=3.7V
0 50 Temperature Topt (C)
100
11) Delay Time for Latch-type Protection vs. Temperature R1221N33AB Delay Time for Latch-type Protection(msec) 4.0 Delay Time for Latch-type Protection(msec) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -50 0 50 Temperature Topt(C) 100
VIN=4.5V
R1221N25XA 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -50
VIN=3.7V
0 50 Temperature Topt(C)
100
12) Delay Time for Reset-type Protection vs. Temperature R1221N33AH 5 Delay Time for Reset-type Protection(msec) Delay Time for Reset-type Protection(msec) 4 3 2 1 0 -50 0 50 (C) Temperature Topt 100
VIN=4.5V
R1221N33AG 5 4 3 2 1 0 -50 0
VIN=4.5V
50
100
Temperature Topt (C)
12345
Rev. 1.11 - 17 -
13) VD Output Delay Time vs. Temperature R1221N33AB 6
VD Output Delay Time (msec) VIN=8.0V
R1221N25XA 6 5 VD Output Delay Time(msec) 4 3 2 1 0
VIN=8.0V
5 4 3 2 1 0 -50 0 50 Temperature Topt(C) 100
-50
0 50 Temperature Topt(C)
100
14) EXT"H" Output Current vs. Temperature R1221N33AB 16 EXT"H" Output Current(mA) 14 12 10 8 6 4 2 0 -50 0 50 Temperature Topt (C) 100
15) EXT "L" Output Current vs. Temperature R1221N33AB EXT"L"Output Current(mA) 30 25 20 15 10 5 0 -50 0 50 100 Temperature Topt(C)
12345
Rev. 1.11 - 18 -
16) VDOUT "L" Output Current vs. Temperature
R1221N33AD 1.6 1.4 1.2 VDLC(mA) 1.0 0.8 0.6 0.4 0.2 0.0 -50 0 50 100 Temperature Topt (C)
17) Load Transient Response
R1221N33AA 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 2.5 2.4 0 0.0005 Time (sec)
VIN=5V L=27uH
R1221N33AA 3.6 3.5 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 0 0.05 Time (sec)
VIN=5V L=27uH
Output Voltage VOUT(V)
500
Output Current IOUT(mA)
Output Voltage VOUT(V)
500
0.1 0.001
0.1 0.1
Output Current IOUT(mA)
R1221N33AB 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 2.5 2.4 0 0.0005 Time (sec)
VIN=5V L=27uH
R1221N33AB 3.6 3.5 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 0 0.05 Time (sec)
VIN=5V L=27uH
Output Voltage VOUT(V)
Output Voltage VOUT(V)
Output Current IOUT(mA)
500
500
Output Current IOUT(mA)
0.1 0.001
0.1 0.1
12345
Rev. 1.11 - 19 -
R1221N33AC 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 2.5 2.4 0 0.0005 Time (sec)
VIN=5V L=27uH
R1221N33AC 3.6 3.5 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 0 0.05 Time (sec)
VIN=5V L=27uH
Output Voltage VOUT(V)
Output Voltage VOUT(V)
Output Current IOUT(mA)
500
500
IOUT(mA)
0.1 0.001
0.1 0.1
R1221N33AD 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 2.5 2.4 0 0.0005 Time (sec)
VIN=5V L=27uH
R1221N33AD 3.6 3.5 3.4 3.3 3.2 3.1 3 2.9 2.8 2.7 2.6 0 0.05 Time (sec)
VIN=5V L=27uH
Output Voltage VOUT(V)
Output Voltage VOUT(V)
Out ut Cu e t IOUT(mA)
Output Current IOUT(mA)
500
500
0.1 0.001
0.1 0.1
18) Turn-on Waveform R1221N33AA(VIN=10V,IOUT=0mA) L=27uH 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 R1221N33AA(VIN=5V,IOUT=0mA) L=27uH 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01
Output Voltage VOUT(V)
10
CE Voltage(V)
Output Voltage VOUT(V)
5
CE Voltage(V)
0
0.02
0 0.02
0
0.01 Time (sec)
0
0.01 Time (sec)
12345
Rev. 1.11 - 20 -
R1221N33AB(VIN=10V,IOUT=0mA) L=27uH 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 0 0.01 Time (sec)
R1221N33AB(VIN=5V,IOUT=0mA) L=27uH 3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01
Output Voltage VOUT(V)
Output Voltage VOUT(V)
10
CE Voltage(V)
5
CE Voltage(V )
0 0.02
0 0.02
0
0.01 Time (sec)
R1221N33AA(VIN=10V,IOUT=100mA)
L=27uH
R1221N33AA(VIN=5V,IOUT=100mA)
L=27uH
3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01
10
CE Voltage(V)
0 0.02
3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 0 0.01 Time (sec)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
5
CE Voltage(V)
0 0.02
0
0.01 Time (sec)
R1221N33AB(VIN=10V,IOUT=100mA)
L=27uH
R1221N33AB(VIN=5V,IOUT=100mA)
L=27uH
3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 0 0.01 Time (sec)
10
0 0.02
3.5 3 2.5 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -3.5 -0.01 0 0.01 Time (sec)
Output Voltage VOUT(V)
Output Voltage VOUT(V)
5
CE Voltage(V)
CE Voltage(V)
0 0.02
12345
Rev. 1.11 - 21 -


▲Up To Search▲   

 
Price & Availability of R1221N50AH-TR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X